翻訳と辞書
Words near each other
・ Generalizations of the derivative
・ Generalized additive model
・ Generalized additive model for location, scale and shape
・ Generalized algebraic data type
・ Generalized anxiety disorder
・ Generalized Anxiety Disorder 7
・ Generalized Appell polynomials
・ Generalized arithmetic progression
・ Generalized assignment problem
・ Generalized audit software
・ Generalized Automation Language
・ Generalized beta distribution
・ Generalized Büchi automaton
・ Generalized canonical correlation
・ Generalized chi-squared distribution
Generalized Clifford algebra
・ Generalized complex structure
・ Generalized context-free grammar
・ Generalized continued fraction
・ Generalized coordinates
・ Generalized dihedral group
・ Generalized Dirichlet distribution
・ Generalized distributive law
・ Generalized eigenvector
・ Generalized entropy index
・ Generalized Environmental Modeling System for Surfacewaters
・ Generalized epilepsy with febrile seizures plus
・ Generalized eruptive histiocytoma
・ Generalized erythema
・ Generalized essential telangiectasia


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Generalized Clifford algebra : ウィキペディア英語版
Generalized Clifford algebra

In mathematics, a Generalized Clifford algebra (GCA) is an associative algebra that generalizes the Clifford algebra, and goes back to the work of Hermann Weyl,〔Weyl, H., "Quantenmechanik und Gruppentheorie", ''Zeitschrift für Physik'', 46 (1927) pp. 1–46,
. Weyl, H., ''The Theory of Groups and Quantum Mechanics'' (Dover, New York, 1931)〕 who utilized and formalized these clock-and-shift operators introduced by J. J. Sylvester (1882),〔Sylvester, J. J., (1882), ''Johns Hopkins University Circulars'' I: 241-242; ibid II (1883) 46;
ibid III (1884) 7–9. Summarized in ''The Collected Mathematics Papers of James Joseph Sylvester'' (Cambridge University Press, 1909) v III .
(online ) and ( further ).
〕 and organized by Cartan (1898)〔Cartan, E. (1898). "Les groupes bilinéaires et les systèmes de nombres complexes." ''Annales de la faculté
des sciences de Toulouse'' 12.1 B65-B99. (online )〕 and Schwinger.〔Schwinger, J. (1960), "Unitary operator bases", ''Proc Natl Acad Sci U S A'', April; 46(4): 570–579, PMCID: PMC222876; ''ibid'', "Unitary transformations and the action principle", 46(6): 883–897, PMCID: PMC222951〕
Clock and shift matrices find routine applications in numerous areas of mathematical physics, providing the cornerstone of quantum mechanical dynamics in finite-dimensional vector spaces.〔〔A. K. Kwaśniewski: ''On Generalized Clifford Algebra C4(n) and GLq(2;C) quantum group''〕 The concept of a spinor can further be linked to these algebras.〔
The term Generalized Clifford Algebras can also refer to associative algebras that are constructed using forms of higher degree instead of quadratic forms.
== Definition and properties ==


抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Generalized Clifford algebra」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.